
Key Reinstallation Attacks
Breaking WPA2 by forcing nonce reuse

Discovered by Mathy Vanhoef of imec-DistriNet, KU Leuven

INTRO DEMO DETAILS PAPER TOOLS

Q&A

I N T R O D U C T I O N

We discovered serious weaknesses in WPA2, a protocol that secures all modern
protected Wi-Fi networks. An attacker within range of a victim can exploit these
weaknesses using key reinstallation attacks (KRACKs). Concretely, attackers can use
this novel attack technique to read information that was previously assumed to be
safely encrypted. This can be abused to steal sensitive information such as credit card
numbers, passwords, chat messages, emails, photos, and so on. The attack works
against all modern protected Wi-Fi networks. Depending on the network
configuration, it is also possible to inject and manipulate data. For example, an attacker
might be able to inject ransomware or other malware into websites.

The weaknesses are in the Wi-Fi standard itself, and not in individual products or
implementations. Therefore, any correct implementation of WPA2 is likely affected. To
prevent the attack, users must update affected products as soon as security updates
become available. Note that if your device supports Wi-Fi, it is most likely affected.
During our initial research, we discovered ourselves that Android, Linux, Apple,

Windows, OpenBSD, MediaTek, Linksys, and others, are all affected by some variant
of the attacks. For more information about specific products, consult the database of
CERT/CC, or contact your vendor.

The research behind the attack will be presented at the Computer and
Communications Security (CCS) conference, and at the Black Hat Europe conference.
Our detailed research paper can already be downloaded.

D E M O N S T R A T I O N

As a proof-of-concept we executed a key reinstallation attack against an Android
smartphone. In this demonstration, the attacker is able to decrypt all data that the
victim transmits. For an attacker this is easy to accomplish, because our key
reinstallation attack is exceptionally devastating against Linux and Android 6.0 or
higher. This is because Android and Linux can be tricked into (re)installing an all-
zero encryption key (see below for more info). When attacking other devices, it is
harder to decrypt all packets, although a large number of packets can nevertheless be
decrypted. In any case, the following demonstration highlights the type of information
that an attacker can obtain when performing key reinstallation attacks against
protected Wi-Fi networks:

Our attack is not limited to recovering login credentials (i.e. e-mail addresses and
passwords). In general, any data or information that the victim transmits can be
decrypted. Additionally, depending on the device being used and the network setup, it
is also possible to decrypt data sent towards the victim (e.g. the content of a website).
Although websites or apps may use HTTPS as an additional layer of protection, we

warn that this extra protection can (still) be bypassed in a worrying number of
situations. For example, HTTPS was previously bypassed in non-browser software, in
Apple's iOS and OS X, in Android apps, in Android apps again, in banking apps, and
even in VPN apps.

D E T A I L S

Our main attack is against the 4-way handshake of the WPA2 protocol. This
handshake is executed when a client wants to join a protected Wi-Fi network, and is
used to confirm that both the client and access point possess the correct credentials
(e.g. the pre-shared password of the network). At the same time, the 4-way handshake
also negotiates a fresh encryption key that will be used to encrypt all subsequent
traffic. Currently, all modern protected Wi-Fi networks use the 4-way handshake. This
implies all these networks are affected by (some variant of) our attack. For instance,
the attack works against personal and enterprise Wi-Fi networks, against the older
WPA and the latest WPA2 standard, and even against networks that only use AES. All
our attacks against WPA2 use a novel technique called a key reinstallation
attack (KRACK):

Key reinstallation attacks: high level description

In a key reinstallation attack, the adversary tricks a victim into reinstalling an already-
in-use key. This is achieved by manipulating and replaying cryptographic
handshake messages. When the victim reinstalls the key, associated parameters
such as the incremental transmit packet number (i.e. nonce) and receive packet
number (i.e. replay counter) are reset to their initial value. Essentially, to guarantee
security, a key should only be installed and used once. Unfortunately, we found this is
not guaranteed by the WPA2 protocol. By manipulating cryptographic handshakes, we
can abuse this weakness in practice.

Key reinstallation attacks: concrete example against the 4-way
handshake

As described in the introduction of the research paper, the idea behind a key
reinstallation attack can be summarized as follows. When a client joins a network, it
executes the 4-way handshake to negotiate a fresh encryption key. It will install this
key after receiving message 3 of the 4-way handshake. Once the key is installed, it will
be used to encrypt normal data frames using an encryption protocol. However,
because messages may be lost or dropped, the Access Point (AP) will retransmit
message 3 if it did not receive an appropriate response as acknowledgment. As a
result, the client may receive message 3 multiple times. Each time it receives this
message, it will reinstall the same encryption key, and thereby reset the incremental
transmit packet number (nonce) and receive replay counter used by the encryption
protocol. We show that an attacker can force these nonce resets by collecting and
replaying retransmissions of message 3 of the 4-way handshake. By forcing
nonce reuse in this manner, the encryption protocol can be attacked, e.g., packets can
be replayed, decrypted, and/or forged. The same technique can also be used to attack
the group key, PeerKey, TDLS, and fast BSS transition handshake.

Practical impact

In our opinion, the most widespread and practically impactful attack is the key
reinstallation attack against the 4-way handshake. We base this judgement on two
observations. First, during our own research we found that most clients were affected
by it. Second, adversaries can use this attack to decrypt packets sent by clients,
allowing them to intercept sensitive information such as passwords or cookies.
Decryption of packets is possible because a key reinstallation attack causes the
transmit nonces (sometimes also called packet numbers or initialization vectors) to be
reset to zero. As a result, the same encryption key is used with nonce values that
have already been used in the past. In turn, this causes all encryption protocols of
WPA2 to reuse keystream when encrypting packets. In case a message that reuses
keystream has known content, it becomes trivial to derive the used keystream. This
keystream can then be used to decrypt messages with the same nonce. When there is
no known content, it is harder to decrypt packets, although still possible in several
cases (e.g. English text can still be decrypted). In practice, finding packets with known
content is not a problem, so it should be assumed that any packet can be decrypted.

The ability to decrypt packets can be used to decrypt TCP SYN packets. This allows
an adversary to obtain the TCP sequence numbers of a connection, and hijack TCP
connections. As a result, even though WPA2 is used, the adversary can now perform
one of the most common attacks against open Wi-Fi networks: injecting malicious data
into unencrypted HTTP connections. For example, an attacker can abuse this to inject
ransomware or malware into websites that the victim is visiting.

If the victim uses either the WPA-TKIP or GCMP encryption protocol, instead of AES-
CCMP, the impact is especially catastrophic. Against these encryption protocols,
nonce reuse enables an adversary to not only decrypt, but also to forge and
inject packets. Moreover, because GCMP uses the same authentication key in both
communication directions, and this key can be recovered if nonces are reused, it is
especially affected. Note that support for GCMP is currently being rolled out under the
name Wireless Gigabit (WiGig), and is expected to be adopted at a high rate over the
next few years.

The direction in which packets can be decrypted (and possibly forged) depends on the
handshake being attacked. Simplified, when attacking the 4-way handshake, we can
decrypt (and forge) packets sent by the client. When attacking the Fast BSS Transition
(FT) handshake, we can decrypt (and forge) packets sent towards the client. Finally,
most of our attacks also allow the replay of unicast, broadcast, and multicast frames.
For further details, see Section 6 of our research paper.

Note that our attacks do not recover the password of the Wi-Fi network. They also
do not recover (any parts of) the fresh encryption key that is negotiated during the
4-way handshake.

Android and Linux

Our attack is especially catastrophic against version 2.4 and above of wpa_supplicant,
a Wi-Fi client commonly used on Linux. Here, the client will install an all-zero
encryption key instead of reinstalling the real key. This vulnerability appears to be
caused by a remark in the Wi-Fi standard that suggests to clear the encryption key
from memory once it has been installed for the first time. When the client now receives
a retransmitted message 3 of the 4-way handshake, it will reinstall the now-cleared

encryption key, effectively installing an all-zero key. Because Android uses
wpa_supplicant, Android 6.0 and above also contains this vulnerability. This makes it
trivial to intercept and manipulate traffic sent by these Linux and Android
devices. Note that currently 50% of Android devices are vulnerable to this
exceptionally devastating variant of our attack.

Assigned CVE identifiers

The following Common Vulnerabilities and Exposures (CVE) identifiers were assigned
to track which products are affected by specific instantiations of our key reinstallation
attack:

• CVE-2017-13077: Reinstallation of the pairwise encryption key (PTK-TK) in the

4-way handshake.

• CVE-2017-13078: Reinstallation of the group key (GTK) in the 4-way handshake.

• CVE-2017-13079: Reinstallation of the integrity group key (IGTK) in the 4-way

handshake.

• CVE-2017-13080: Reinstallation of the group key (GTK) in the group key

handshake.

• CVE-2017-13081: Reinstallation of the integrity group key (IGTK) in the group

key handshake.

• CVE-2017-13082: Accepting a retransmitted Fast BSS Transition (FT)

Reassociation Request and reinstalling the pairwise encryption key (PTK-TK)

while processing it.

• CVE-2017-13084: Reinstallation of the STK key in the PeerKey handshake.

• CVE-2017-13086: reinstallation of the Tunneled Direct-Link Setup (TDLS)

PeerKey (TPK) key in the TDLS handshake.

• CVE-2017-13087: reinstallation of the group key (GTK) when processing a

Wireless Network Management (WNM) Sleep Mode Response frame.

• CVE-2017-13088: reinstallation of the integrity group key (IGTK) when

processing a Wireless Network Management (WNM) Sleep Mode Response

frame.

Note that each CVE identifier represents a specific instantiation of a key reinstallation
attack. This means each CVE ID describes a specific protocol vulnerability, and
therefore many vendors are affected by each individual CVE ID. You can also read
vulnerability note VU#228519 of CERT/CC for additional details on which products are
known to be affected.

P A P E R

Our research paper behind the attack is titled Key Reinstallation Attacks: Forcing
Nonce Reuse in WPA2 and will be presented at the Computer and Communications
Security (CCS) conference on Wednesday 1 November 2017.

Although this paper is made public now, it was already submitted for review on 19 May
2017. After this, only minor changes were made. As a result, the findings in the paper
are already several months old. In the meantime, we have found easier techniques to
carry out our key reinstallation attack against the 4-way handshake. With our novel
attack technique, it is now trivial to exploit implementations that only accept encrypted
retransmissions of message 3 of the 4-way handshake. In particular this means that
attacking macOS and OpenBSD is significantly easier than discussed in the
paper.

We would like to highlight the following addendums and errata:

Addendum: wpa_supplicant v2.6 and Android 6.0+

Linux's wpa_supplicant v2.6 is also vulnerable to the installation of an all-zero
encryption key in the 4-way handshake. This was discovered by John A. Van Boxtel.
As a result, all Android versions higher than 6.0 are also affected by the attack, and
hence can be tricked into installing an all-zero encryption key. The new attack works by
injecting a forged message 1, with the same ANonce as used in the original message
1, before forwarding the retransmitted message 3 to the victim.

Addendum: other vulnerable handshakes

After our initial research as reported in the paper, we discovered that the TDLS
handshake and WNM Sleep Mode Response frame are also vulnerable to key
reinstallation attacks.

Selected errata

• In Figure 9 at stage 3 of the attack, the frame transmitted from the adversary to

the authenticator should say a ReassoReq instead of ReassoResp.

T O O L S

We have made scripts to detect whether an implementation of the 4-way handshake,
group key handshake, or Fast BSS Transition (FT) handshake is vulnerable to key
reinstallation attacks. These scripts will be released once we have had the time to
clean up their usage instructions.

We also made a proof-of-concept script that exploits the all-zero key (re)installation
present in certain Android and Linux devices. This script is the one that we used in the
demonstration video. It will be released once everyone has had a reasonable chance
to update their devices (and we have had a chance to prepare the code repository for
release). We remark that the reliability of our proof-of-concept script may depend on
how close the victim is to the real network. If the victim is very close to the real
network, the script may fail because the victim will always directly communicate with
the real network, even if the victim is (forced) onto a different Wi-Fi channel than this
network.

Q & A

Do we now need WPA3?

No, luckily implementations can be patched in a backwards-compatible manner.
This means a patched client can still communicate with an unpatched access point
(AP), and vice versa. In other words, a patched client or access point sends exactly the
same handshake messages as before, and at exactly the same moment in time.
However, the security updates will assure a key is only installed once, preventing our
attack. So again, update all your devices once security updates are available. Finally,
although an unpatched client can still connect to a patched AP, and vice versa, both
the client and AP must be patched to defend against all attacks!

Should I change my Wi-Fi password?

Changing the password of your Wi-Fi network does not prevent (or mitigate) the attack.
So you do not have to update the password of your Wi-Fi network. Instead, you should
make sure all your devices are updated, and you should also update the firmware of
your router. Nevertheless, after updating both your client devices and your router, it's
never a bad idea to change the Wi-Fi password.

I'm using WPA2 with only AES. That's also vulnerable?

Yes, that network configuration is also vulnerable. The attack works against both
WPA1 and WPA2, against personal and enterprise networks, and against any cipher
suite being used (WPA-TKIP, AES-CCMP, and GCMP). So everyone should update
their devices to prevent the attack!

You use the word "we" in this website. Who is we?

I use the word "we" because that's what I'm used to writing in papers. In practice, all
the work is done by me, with me being Mathy Vanhoef. My awesome supervisor is
added under an honorary authorship to the research paper for his excellent general
guidance. But all the real work was done on my own. So the author list of academic
papers does not represent division of work :)

Is my device vulnerable?

Probably. Any device that uses Wi-Fi is likely vulnerable. Contact your vendor for more
information.

What if there are no security updates for my router?

Our main attack is against the 4-way handshake, and does not exploit access points,
but instead targets clients. So it might be that your router does not require security
updates. We strongly advise you to contact your vendor for more details. In general
though, you can try to mitigate attacks against routers and access points by disabling
client functionality (which is for example used in repeater modes) and disabling 802.11r
(fast roaming). For ordinary home users, your priority should be updating clients such
as laptops and smartphones.

How did you discover these vulnerabilities?

When working on the final (i.e. camera-ready) version of another paper, I was double-
checking some claims we made regarding OpenBSD's implementation of the 4-way
handshake. In a sense I was slacking off, because I was supposed to be just finishing
the paper, instead of staring at code. But there I was, inspecting some code I already
read a hundred times, to avoid having to work on the next paragraph. It was at that
time that a particular call to ic_set_key caught my attention. This function is called
when processing message 3 of the 4-way handshake, and it installs the pairwise key to
the driver. While staring at that line of code I thought “Ha. I wonder what happens if
that function is called twice”. At the time I (correctly) guessed that calling it twice might
reset the nonces associated to the key. And since message 3 can be retransmitted by
the Access Point, in practice it might indeed be called twice. “Better make a note of
that. Other vendors might also call such a function twice. But let's first finish this
paper...”. A few weeks later, after finishing the paper and completing some other work,
I investigated this new idea in more detail. And the rest is history.

The 4-way handshake was mathematically proven as secure. How is your
attack possible?

The brief answer is that the formal proof does not assure a key is installed once.
Instead, it only assures the negotiated key remains secret, and that handshake
messages cannot be forged.

The longer answer is mentioned in the introduction of our research paper: our attacks
do not violate the security properties proven in formal analysis of the 4-way
handshake. In particular, these proofs state that the negotiated encryption key remains
private, and that the identity of both the client and Access Point (AP) is confirmed. Our
attacks do not leak the encryption key. Additionally, although normal data frames can
be forged if TKIP or GCMP is used, an attacker cannot forge handshake messages
and hence cannot impersonate the client or AP during handshakes. Therefore, the
properties that were proven in formal analysis of the 4-way handshake remain true.
However, the problem is that the proofs do not model key installation. Put differently,
the formal models did not define when a negotiated key should be installed. In practice,
this means the same key can be installed multiple times, thereby resetting nonces and
replay counters used by the encryption protocol (e.g. by WPA-TKIP or AES-CCMP).

Some attacks in the paper seem hard

We have follow-up work making our attacks (against macOS and OpenBSD for
example) significantly more general and easier to execute. So although we agree that
some of the attack scenarios in the paper are rather impractical, do not let this fool you
into believing key reinstallation attacks cannot be abused in practice.

If an attacker can do a man-in-the-middle attack, why can't he just
decrypt all the data?

As mentioned in the demonstration, the attacker first obtains a man-in-the-middle
(MitM) position between the victim and the real Wi-Fi network (called a channel-based
MitM position). However, this MitM position does not enable the attacker to decrypt
packets! This position only allows the attacker to reliably delay, block, or replay
encrypted packets. So at this point in the attack, he or she cannot yet decrypt packets.
Instead, the ability to reliably delay and block packets is used to execute a key
reinstallation attack. After performing a key reinstallation attack, packets can be
decrypted.

Are people exploiting this in the wild?

We are not in a position to determine if this vulnerability has been (or is being) actively
exploited in the wild. That said, key reinstallations can actually occur spontaneously
without an adversary being present! This may for example happen if the last message
of a handshake is lost due to background noise, causing a retransmission of the
previous message. When processing this retransmitted message, keys may be
reinstalled, resulting in nonce reuse just like in a real attack.

Should I temporarily use WEP until my devices are patched?

NO! Keep using WPA2.

Will the Wi-Fi standard be updated to address this?

There seems to be an agreement that the Wi-Fi standard should be updated to
explicitly prevent our attacks. These updates likely will be backwards-compatible with
older implementations of WPA2. Time will tell whether and how the standard will be
updated.

Is the Wi-Fi Alliance also addressing these vulnerabilities?

For those unfamiliar with Wi-Fi, the Wi-Fi Alliance is an organization which certifies that
Wi-Fi devices conform to certain standards of interoperability. Among other things, this
assures that Wi-Fi products from different vendors work well together.

The Wi-Fi Alliance has a plan to help remedy the discovered vulnerabilities in WPA2.
Summarized, they will:

• Require testing for this vulnerability within their global certification lab network.

• Provide a vulnerability detection tool for use by any Wi-Fi Alliance member (this

tool is based on my own detection tool that determines if a device is vulnerable to

some of the discovered key reinstallation attacks).

• Broadly communicate details on this vulnerability, including remedies, to device

vendors. Additionally, vendors are encouraged to work with their solution

providers to rapidly integrate any necessary patches.

• Communicate the importance for users to ensure they have installed the latest

recommended security updates from device manufacturers.

Why did you use match.com as an example in the demonstration video?

Users share a lot of personal information on websites such as match.com. So this
example highlights all the sensitive information an attacker can obtain, and hopefully
with this example people also better realize the potential (personal) impact. We also
hope this example makes people aware of all the information these dating websites
may be collecting.

How can these types of bugs be prevented?

We need more rigorous inspections of protocol implementations. This requires help
and additional research from the academic community! Together with other
researchers, we hope to organize workshop(s) to improve and verify the correctness of
security protocol implementations.

Why the domain name krackattacks.com?

First, I'm aware that KRACK attacks is a pleonasm, since KRACK stands for key
reinstallation attack and hence already contains the word attack. But the domain name
rhymes, so that's why it's used.

Did you get bug bounties for this?

I haven't applied for any bug bounties yet, nor have I received one already.

How does this attack compare to other attacks against WPA2?

This is the first attack against the WPA2 protocol that doesn't rely on password
guessing. Indeed, other attacks against WPA2-enabled network are against
surrounding technologies such as Wi-Fi Protected Setup (WPS), or are attacks against
older standards such as WPA-TKIP. Put differently, none of the existing attacks were
against the 4-way handshake or against cipher suites defined in the WPA2 protocol. In
contrast, our key reinstallation attack against the 4-way handshake (and against other
handshakes) highlights vulnerabilities in the WPA2 protocol itself.

CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE | D E S I G N I N S P I R E D B Y
T E M P L A T E D .

Are other protocols also affected by key reinstallation attacks?

We expect that certain implementations of other protocols may be vulnerable to similar
attacks. So it's a good idea to audit security protocol implementations with this attack in
mind. However, we consider it unlikely that other protocol standards are affected by
similar attacks (or at least so we hope). Nevertheless, it's still a good idea to audit other
protocols!

Is there a higher resolution version of the logo?

Yes there is. And a big thank you goes to the person that made the logo!

When did you first notify vendors about the vulnerability?

We sent out notifications to vendors whose products we tested ourselves around 14
July 2017. After communicating with these vendors, we realized how widespread the
weaknesses we discovered are (only then did I truly convince myself it was indeed a
protocol weaknesses and not a set of implementation bugs). At that point, we decided
to let CERT/CC help with the disclosure of the vulnerabilities. In turn, CERT/CC sent
out a broad notification to vendors on 28 August 2017.

Why did OpenBSD silently release a patch before the embargo?

OpenBSD was notified of the vulnerability on 15 July 2017, before CERT/CC was
involved in the coordination. Quite quickly, Theo de Raadt replied and critiqued the
tentative disclosure deadline: “In the open source world, if a person writes a diff and
has to sit on it for a month, that is very discouraging”. Note that I wrote and included a
suggested diff for OpenBSD already, and that at the time the tentative disclosure
deadline was around the end of August. As a compromise, I allowed them to silently
patch the vulnerability. In hindsight this was a bad decision, since others might
rediscover the vulnerability by inspecting their silent patch. To avoid this problem in the
future, OpenBSD will now receive vulnerability notifications closer to the end of an
embargo.

So you expect to find other Wi-Fi vulnerabilities?

“I think we're just getting started.” — Master Chief, Halo 1

