
Web Application
Vulnerability Report
2016

55%
OF WEB APPLICATIONS

HAVE ONE OR MORE
 HIGH-SEVERITY
 VULNERABILITY

84%
OF WEB APPLICATIONS

HAVE ONE OR MORE
MEDIUM-SEVERITY

VULNERABILITY

8%
OF PERIMETER NETWORK

ASSETS HAVE ONE OR
 MORE HIGH-SEVERITY

VULNERABILITY

16%
OF PERIMETER NETWORK

ASSETS HAVE ONE OR
MORE MEDIUM-SEVERITY

VULNERABILITY

Introduction

Acunetix Web Application Vulnerability Report 2016 2

Welcome to the 2016 edition of the Acunetix Web Application
Vulnerability Report.

This document presents the second Web Application Vulnerability Report,
an annual effort from the Acunetix Team. In this report, Acunetix will
present data gathered, aggregated and analyzed throughout the period
of 1st April 2015 to 31st March 2016 to illustrate the state of security of
web applications and network perimeters.

By analyzing scan results on Acunetix’ Online Vulnerability Scanner
(OVS) platform, we are able to identify current and emerging patterns in
the web application security space. With over 61,000 web and network
security scans run over a two-year period, Acunetix is uniquely positioned
to observe such trends.

Web app vulnerabilities have rapidly increased in the past 12 months
as companies demand faster web application release cycles to satisfy
staff and customers. Web application vulnerabilities are dangerous for
organizations as they risk not only brand and reputational damage, but
data breaches and the major fines associated with these. The findings
continue to reaffirm the widely held understanding that the web
application vector is a major, viable and low-barrier-to-entry vector for
attackers; be they financially motivated, “hacktivists”, nation-state attacks
or threat actors.

The threat landscape is changing—the web stack, has evolved to serve-
up rich experiences directly within the browser. As a result of the
versatility and platform agnosticism that web applications provide, web
applications and web services are ever increasingly replacing legacy
applications, and as a consequence, widening attackers' exploitation
opportunities; especially since traditional network-layer-only security
controls such as firewalls and signature-based intrusion prevention and
detection systems (IPS/IDS) have little, or no role to play in detecting and
stopping an attack occurring via the web application vector.

This report aims to shed a light on the state of web and perimeter
network security based on the analysis undergone. While this research
found a minor, but encouraging reduction in security vulnerabilities such
as SQL injection and Cross-site Scripting, web application vulnerabilities
still reign supreme and are worryingly on the rise. Now the majority of
web apps (55%) contain a high severity vulnerability, up from 46% last
year.

The Acunetix Team

Web Applications

Perimeter Network Assets

84%
are susceptible to

 at least one
medium-severity

vulnerability

16%
are susceptible to

 at least one
medium-severity

vulnerability

55%
have at least one

high-severity vulnerability

▲ Up 9% in
 12 months

8%
were found to have

at least one
high-severity
vulnerability

Methodology

Acunetix Web Application Vulnerability Report 2016

The data aggregated and analysed in this report was gathered from
automated web and network perimeter scans run on the Acunetix
Online Vulnerability Scanner platform, over the period of one year,
starting 1st April 2015 to 31st March 2016. Evaluation scans on the
intentionally vulnerable Acunetix test websites were omitted for the
scope of this analysis.

How an Automated Web Scan Works
The scanning process comprises of three stages—Crawling, Scanning
and Reporting.

Crawling
During the crawling stage, Acunetix
Vulnerability Scanner analyzes the
structure of the web application being
scanned by leveraging its DeepScan
crawling and scanning engine.

DeepScan not only looks for links and
inputs, but also executes JavaScript
and can interact with HTML5-based
web applications just like a user
in a modern web browser would.
This means that modern client-side
applications leveraging JavaScript
frameworks like Angular JS, React,
Ember.js can be properly tested.

Scanning
The scanning stage is where Acunetix Vulnerability Scanner tests the web application for over 3000
vulnerabilities, some relating specifically to web server security, misconfigurations, and information
disclosure; while the, large majority focus on testing inputs on a page for vulnerabilities. The scanner can
automatically test JSON, XML and Google Web Toolkit (GWT) input vectors in addition to the typical GET and
POST parameters.

Reporting
The third final stage of a scan is reporting, where, after a scan is complete, vulnerability alerts are reported,
complete with detailed information about vulnerabilities in question, remediation advice and links to other
online references.

For the purpose of this
analysis, a random sample of
5,700 subscribers who have
successfully scanned one
or more Scan Targets were
randomly selected out of a
possible 37,500 subscribers.

3

The Dataset

Acunetix Web Application Vulnerability Report 2016

The data analysed in this report is gathered from automated web and
network perimeter scans run on the Acunetix Online Vulnerability
Scanner platform.

This dataset focuses predominantly on high and medium-severity
vulnerabilities found in web applications as well as perimeter network
vulnerability data.

Average/Month

347, 000
files scanned

17, 962
Network Scans

27, 248
Web Scans

5, 718
Scan Targets

204,000
directories scanned

232, 000, 000
HTTP requests done

208, 000
total alerts discovered

4

Vulnerabilities at a Glance

*N.B. The increase in WordPress Vulnerabilities in this case, can be attributed to the fact that the latest version of Acunetix (v10.5) used in the

 purpose of this analysis, includes many more WordPress vulnerability checks than previous Acunetix version 9 had used in 2015.

What Changed and What Hasn’t
By comparing this dataset with results obtained last year, we can
observe areas of improvement and regression in the amount of
vulnerabilities by class.

5

Vulnerabilities by Type - High Severity

Co
de

 Ex
ce

cu
tio

n

W
or

dP
re

ss
 V

uln
er

ab
ilit

ies
*

SQ
L I

nje
cti

on
 (S

QLi)

Se
rv

er
-si

de
 R

eq
ue

st
Fo

rg
er

y (
SS

RF
)

Cr
os

s-s
ite

 Sc
rip

tin
g (

XS
S)

Ove
rfl

ow
 V

uln
er

ab
ilit

ies
Vu

lne
ra

ble
 Ja

va
Sc

rip
t L

ibr
ar

ies

Pe
rim

et
er

 N
et

wor
k V

uln
er

ab
ilit

ies
 (S

SH
)

W
ea

k P
as

sw
or

ds

Pe
rim

et
er

 N
et

wor
k V

uln
er

ab
ilit

ies
 (M

ail
)

So
ur

ce
 Sc

rip
t D

isc
los

ur
e

Pe
rim

et
er

 N
et

wor
k V

uln
er

ab
ilit

ies
 (D

NS)
10%

10%

20%

20%

30%

30%

Th
is

 d
at

a
w

as
 n

ot
 tr

ac
ke

d
in

 2
01

5

20
16

40%

Fil
e I

nc
lus

ion
 +

 D
ire

cto
ry

 Tr
av

er
sa

l

W
eb

 Se
rv

er
 V

uln
er

ab
ilit

ies

20
15

20
16

20
15

20
16

20
15

20
16

20
15 20

16

20
15

20
16

20
15

20
16

20
15

20
16

20
15

20
16

20
16

Th
is

 d
at

a
w

as
 n

ot
 tr

ac
ke

d
in

 2
01

5

20
16

20
15

20
16

20
15

20
1620

15

20
16

Th
is

 d
at

a
w

as
 n

ot
 tr

ac
ke

d
in

 2
01

5

Acunetix Web Application Vulnerability Report 2016

Vulnerabilities by Type - Medium Severity

Vulnerabilities by Paradigm and Severity

Web Application (High-severity)

Network Perimeter (High-severity)

Web Application (Medium-severity)

Network Perimeter (Medium-severity)

6

Den
ial

 o
f S

er
vic

e (
DoS

) V
uln

er
ab

ilit
ies

Cr
os

s-s
ite

 R
eq

ue
st

Fo
rg

er
y (

CS
RF

)

Dire
cto

ry
 Li

sti
ng

TL
S/

SS
L V

uln
er

ab
ilit

ies

Hos
t H

ea
de

r I
nje

cti
on

10%

10% 20% 30% 40% 50% 60% 70% 80% 90%

20%

30%

40%

50%

60%

20
15

20
16

Th
is

 d
at

a
w

as
 n

ot
 tr

ac
ke

d
in

 2
01

5

20
16

20
15

20
16

20
15

20
16

20
15

20
16

2015

2016

2015

2016

2015

2016

2015

2016

Vulnerability Severity

Acunetix Web Application Vulnerability Report 2016

Severity is a metric for classifying the level of risk which a security
vulnerability poses.

The severity level of a vulnerability is assigned based on the security
risk posed to an organization should the vulnerability be exploited, as
well as the degree of difficulty involved in exploiting it. The result of a
successful attack by exploiting a vulnerability could vary from denial
of service and information disclosure, to a complete compromise of
applications or systems.

The following provides a description of what the results in this
analysis consider to be the impact of each vulnerability severity level.

High-severity

An attacker can fully compromise

the confidentiality, integrity or

availability, of a target system

without specialized access, user

interaction or circumstances that

are beyond the attacker’s control.

Very likely to allow lateral movement

and escalation of attack to other

systems on the internal network of

the vulnerable application.

Medium-severity

An attacker can partially

compromise the confidentiality,

integrity or availability, of a target

system. Specialized access, user

interaction, or circumstances

that are beyond the attacker’s

control may be required for an

attack to succeed. Very likely to

be used in conjunction with other

vulnerabilities to escalate an attack.

Low-severity

An attacker can limitedly

compromise the confidentiality,

integrity or availability, of a target

system. Specialized access, user

interaction, or circumstances that

are beyond the attacker’s control is

required for an attack to succeed.

Needs to be used in conjunction

with other vulnerabilities to

escalate an attack.

7

Results

Acunetix Web Application Vulnerability Report 2016

Description
Remote Code Execution (RCE) is a very dangerous vulnerability that
allows an attacker to execute arbitrary commands on the target web
server (usually in a target process). The ability to trigger arbitrary
code execution from one machine on another, especially over the
Internet, is often referred to as remote code execution (RCE).

Impact
A code execution bug is arguably the most severe effect a
vulnerability can cause since it potentially allows an attacker to take
over the system entirely, from where an attacker can likely achieve
lateral movement, taking note of resources on the network and
seeking opportunities for collecting additional credentials or privilege
escalation.

Description
SQL injection (SQLi) refers to an injection attack wherein an attacker
can execute malicious SQL statements (also commonly referred to as
a malicious payload) that control a web application’s database server
(also commonly referred to as a Relational Database Management
System – RDBMS).

5.67% of targets sampled were found to be vulnerable to
code execution. This is a very troubling figure, given the severity of the
vulnerability. It is strongly recommended to refrain from using user input
to execute any commands within an application, however, if you must do
so, user input needs to be properly validated and escaped to prevent code
execution.

Code Execution

6%
324 Targets

8

Code Execution Severity High

SQL Injection Severity High

Acunetix Web Application Vulnerability Report 2016

Since an SQL injection vulnerability could possibly affect any website
or web application that makes use of an SQL-based database, the
vulnerability is one of the oldest, most prevalent and most dangerous
of web application vulnerabilities.

An attacker taking advantage of an SQLi vulnerability is essentially
exploiting a weakness introduced into the application through poor
web application development practices. This allows attackers to
send SQL commands to the web application, allowing them to gain
unauthorized access to data held in the backend database.

By leveraging an SQL injection
vulnerability, given the right
circumstances, an attacker can use it to
bypass a web application’s authentication
and authorization mechanisms and
retrieve the contents of an entire
database. SQL injection can also be used
to add, modify and delete records in a
database, affecting data integrity.

To such an extent, SQL injection can
provide an attacker with unauthorized
access to sensitive data including,
customer data, personally identifiable
information (PII), trade secrets,
intellectual property and other sensitive information.

Blind SQL Injection is a kind of SQLi attack that is used when the
results of an injection attack is not visible to the attacker. This does
not imply that SQL injection is not possible, however, an attacker will
need to find some other way of extracting data out of the database.

While a Blind SQLi attack does not display data within the response
from the server, the attacker is able to retrieve data from the
database by analyzing the results of a logical statement injected into
the SQL query, for instance by asking the database to ‘wait’ a specified
amount of time if a condition is true.

9

Error/UNION

Blind

Identified SQLi
Vulnerabilities

718
Targets

607
Targets

Acunetix Web Application Vulnerability Report 2016

Impact
While SQLi is mostly used to steal data from the database, the
vulnerability can be escalated further, especially if the permissions on
the database are not correctly configured. For example, the attacker
can inject a query that causes some tables to be deleted from the
database, effectively causing a DoS attack.

An attacker can also potentially deploy a web shell onto the server
and subsequently take over the server, and even pivot into other
systems as a result of SQLi.

10

23% of sampled targets were vulnerable to at least one
SQL injection vulnerability. The severity and ease of exploitation,
combined with the maturity of exploitation tools targeting SQL
injection makes this figure worrying; especially when considering how
well understood and documented this vulnerability is.

▼ 3% However, all is not bleak with regards to SQL injection,
this analysis has registered a 3% drop from last year, which indicates
that things are very slowly moving in the right direction, however, as
is the case with most other vulnerabilities in this report, SQL injection
is clearly not a thing of the past and a lot more still needs to be done
to address it.

SQLi
(Error/UNION,Blind)

23%
1325 Targets

SQLi
(Error/UNION)

13%
718 Targets

SQLi
(Blind)

11%
607 Targets

Acunetix Web Application Vulnerability Report 2016

Description
File inclusion and directory traversal vulnerabilities could allow an
attacker to access restricted files and directories outside of a web
server's root directory. In the case of file inclusion vulnerabilities, the
vulnerable application would not just allow the file to be read, but it
would also execute its contents, while directory traversal only allows
the reading of files.

Impact
File inclusion and directory traversal vulnerabilities are very
dangerous since they both allow disclosure of sensitive files, including
source code, secrets and sensitive configuration values. In the case
of file inclusion vulnerabilities, this is also extended to the execution
of interpreted code (such as PHP), and therefore, if combined with a
file upload or arbitrary file write vulnerability (possibly even through
SQL injection), file inclusion vulnerabilities could be escalated to code
execution by an attacker using what is known as a web shell.

11

2% of sampled targets were found to be vulnerable to file inclusion

3% were found to be vulnerable to directory traversal.

▲ 1% These figures are on the rise from last year’s 1% figure

(both for file inclusion and directory traversal)—which is of some concern,
especially for file inclusion, through which an attacker could potentially
execute code given the right conditions. Both file inclusion and directory
traversal vulnerabilities, like most other web vulnerabilities arise from the
implicit trust web developers place in user input.

File Inclusion
(Local)

2%
121 Targets

Directory
Traversal

3%
151 Targets

File Inclusion and Directory Traversal Severity High

Acunetix Web Application Vulnerability Report 2016

Description
Cross-site Scripting (XSS) is a vulnerability wherein client-side code
injection occurs, predominantly through the use of JavaScript due to
its prevalence in most browsing experiences.

Cross-site Scripting can be classified into four major categories:
Stored XSS, Reflected XSS, DOM-based XSS and Blind XSS.
In all cases with XSS, the goal of an attacker is to get a victim to
inadvertently execute a maliciously injected script. The malicious
script is often referred to as a malicious payload, or simply a payload.

Stored (Persistent) XSS attacks involve an attacker injecting a script
(referred to as the payload) that is permanently stored (persisted) on
the target application (for instance within a database, in a comment
field or in a forum post).

Reflected XSS attacks involve an attacker luring a victim to
inadvertently make an HTTP request containing an XSS payload
to a web server, usually achieved through phishing or other social
engineering attacks. Once sent to the web server, the payload is then
reflected back in such a way that the HTTP response includes the
payload from the HTTP request.

DOM-based XSS is an advanced type of XSS wherein a payload is
executed as a result of legitimate client-side JavaScript modifying
the Document Object Model (DOM) in a victim’s browser. In contrast
to the other types of XSS, with DOM-based XSS, the HTTP response
itself does not typically change, but rather client side code designed
to process elements in the DOM, executes the malicious payload that
has been injected in the DOM elements processed by the vulnerable
JavaScript code.

When a web application is vulnerable to XSS, it will load the attacker-
supplied content from a source that the application implicitly trusts,
without properly encoding it. With stored and blind XSS, implicitly-
trusted data is loaded from a datastore (such as a database or cache);
with reflected XSS, the implicitly-trusted data is loaded from the HTTP
request; and with a DOM-based XSS, implicitly-trusted data is loaded
from a DOM-XSS source within the browser's DOM.

12

Cross-site Scripting Severity High

Acunetix Web Application Vulnerability Report 2016

In every case, XSS would result in the browser interpreting the
attacker’s payload as legitimate JavaScript code, and subsequently
executing it. It is important to note that an XSS vulnerability can only
exist if the attacker’s payload ultimately gets rendered in the victim’s
browser.

Impact
The consequences of an XSS attack may not be immediately obvious,
especially since modern web browsers run JavaScript in a tightly
controlled environment and since JavaScript has limited access to the
user’s operating system and the user’s files.

However, when considering that malicious JavaScript has access to
all the same objects as the rest of the web page, including access to
cookies which are often used to store session tokens, if an attacker
can obtain a user’s session cookie, they can then impersonate that
user.

Furthermore, JavaScript can read and make arbitrary modifications to
the browser’s DOM (within the page in which that script is running).

JavaScript can also be leveraged to send HTTP requests with arbitrary
content to arbitrary destinations, and in modern browsers, can
leverage HTML5 APIs such as accessing a user’s geolocation, webcam,
microphone and even the specific files from the victim’s file system.
While such APIs require the victim’s opt-in, XSS in conjunction with
some clever social engineering can bring an attacker a long way.

13

33% of sampled targets were vulnerable to at least one Cross-site
Scripting vulnerability. The combination of XSS and social engineering,
allow attackers to pull off advanced attacks including cookie theft,
keylogging, phishing and identity theft. Critically, XSS vulnerabilities
provide the perfect ground for attackers to escalate attacks to more
serious ones.

▼ 6% Cross-site Scripting vulnerabilities have seen a 6% drop
from last year, which is a sign of improvement, however, clearly, XSS is
still a major issue plaguing web security. As JavaScript becomes ever more
powerful, XSS becomes increasingly more dangerous.

XSS
(Stored, Reflected,
DOM-based, Blind)

33%
1868 Targets

DOM-based
 XSS

1%
63 Targets

Acunetix Web Application Vulnerability Report 2016

Description
JavaScript has become a ubiquitous and every-day part of the web.
Therefore, in order to make development faster and easier, many
web applications rely on JavaScript libraries to avoid ‘reinventing
the wheel’. Unfortunately, many of these JavaScript libraries contain
vulnerabilities, and therefore need to be updated to their latest
version.

Impact
Running vulnerable JavaScript libraries exposes web applications to
security vulnerabilities, most commonly being Cross-site Scripting
vulnerabilities. Using components and libraries with known
vulnerabilities can pose a significant risk to a web application and
JavaScript libraries are certainly no exception.

27% of sampled targets were found to be making use of vulnerable
JavaScript libraries within their web applications. Vulnerable JavaScript
libraries open up the web application in concern to Cross-site Scripting (XSS)
attacks. By far the most frequently encountered vulnerable JavaScript library
was old versions of jQuery, followed by old versions of the YUI Library.

Description
A weak password is short, common, a system default, or something that could be rapidly
guessed by executing a brute force attack using a subset of all possible passwords, such as
words in the dictionary, proper names, words based on the user name or common variations
on these themes.

Impact
Weak passwords are the Achilles' heel of even the most well defended systems. A system is
only as strong as it’s weakest link, and when that link is an easily guessable password, that
could potentially allow an attacker to gain access to restricted areas of a system and even
escalate attacks further.

Vulnerable
JavaScript
Libraries

27%
1566 Targets

14

Vulnerable JavaScript Libraries Severity High

Weak Passwords Severity High

Acunetix Web Application Vulnerability Report 2016

4% of sampled targets were found to be making use of weak passwords.
This figure is up from last year’s 1%. Considering how trivial it is for an
attacker to exploit weak or commonly used passwords, even on staging sites,
it’s baffling to see this figure rise.

Description
Source code often contains sensitive information, ranging from
sensitive configuration information such as database credentials, or
information on how the web application functions.

Impact
With disclosed source code, an attacker can leverage information
obtained to escalate an attack by exploiting other vulnerabilities or
misconfigurations discovered through the disclosed source code and/
or configuration files.

10% of targets sampled were found to be vulnerable to source script
disclosure vulnerabilities. This vulnerability affects the confidentiality of an
application, it makes it possible for an attacker to gain access to sensitive files
(possibly even files containing sensitive user data), configuration files and
application source code. To such an extent, when one considers the possible
ramifications associated with this vulnerability, it’s certainly an area of web
security that requires improvement.

Weak Passwords

4%
233 Targets

Source Script
Disclosure

10%
575 Targets

15

Source Script Disclosure Severity High

 1 As of May 24th 2016 according to a W3Techs survey https://w3techs.com/technologies/details/cm-wordpress/all/all

Description
With 59% of all CMS-based websites making use of WordPress, its
popularity means that it is prime target for attackers. While there are
some inherent security weaknesses in WordPress’ defaults, such as
username enumeration, and XML-RPC authentication bruteforcing,
the WordPress community strives to make security a priority,
especially with automatic security updates turned on by default.
Arguably the opposite can be said for the CMS’ vibrant plugin and
theme ecosystem.

WordPress security vulnerabilities that affect the WordPress core
are relatively straight-forward to patch if you are running the latest
version of WordPress. However, for the estimated 13% of sites on the
internet running versions of the CMS that have been out of date for at
least a year, upgrading may involve more effort due to incompatible
old plugins and themes.

Plugins are the standard way to extend WordPress’s core functionality. It’s possible for anyone to write a
plugin and distribute that plugin on the WordPress plugin repository. As a consequence, it is very common
for plugins containing critical vulnerabilities to make their way into thousands of WordPress installations.

Impact
The impact a vulnerable WordPress installation and/or vulnerable plugins could have, will vary based on the
kind of vulnerability in question. The vulnerability in question can range from cross-site scripting, all the way
up to SQL injection and code execution.

WordPress Core 4.x

WordPress Username Enumeration

WordPress XML-RPC authentication brute force

Wordpress Core older than 4.x

WordPress related vulnerabilities (total)

25% [1402 Targets]

11% [625 Targets]

9% [531 Targets]

4% [246 Targets]

4% [232 Targets]

3% [193 Targets]

WordPress Plugins (medium or high-severity)

Analysis

16

WordPress related vulnerabilities Severity High

Acunetix Web Application Vulnerability Report 2016

Description
Like all other software, web servers have bugs, some of which are
security vulnerabilities. Running vulnerable versions of web server
software is very far from ideal as it can easily lead to compromise,
especially since, unlike most other software, web servers are
designed to be publicly exposed.

Impact
The impact a web server vulnerability could have will depend
specifically on the kind of vulnerability the web server is exposed to.
A vulnerability in a web server can range all the way from information
disclosure to a buffer overflow, which could allow an attacker to gain
code execution.

Apache HTTP Server and Apache Tomcat vulnerabilities, together with
their related vulnerable modules and misconfigurations accounted
for a significant 21% of all sampled targets. Amongst the most
common vulnerabilities, were Apache HTTP Server remote denial of
service (CVE-2011-3192) and Apache HTTP Server httpOnly cookie
disclosure (CVE-2012-0053).

1% [388 Targets]

21% [1220 Targets]

7% [65 Targets]

Apache (HTTP Server and Tomcat) vulnerabilities

Microsoft IIS vulnerabilities

Nginx vulnerabilities

Analysis

17

Web server related vulnerabilities Severity High

Microsoft IIS came in a distant second at 7% of sampled targets. The
large majority of IIS-related vulnerabilities can be attributed to the IIS
tilde directory enumeration vulnerability, which allows an attacker to
enumerate short names of files and directories potentially resulting
in sensitive file disclosure.

Nginx, only marginally showed up in this analysis with only 1% of
targets vulnerable to vulnerabilities concerning the increasingly-
popular web server. The biggest contributor to this result was the
Nginx SPDY heap buffer overflow vulnerability (CVE-2014-0133) in
an old version of Nginx’s SPDY (a precursor to the HTTP/2 protocol
by Google) implementation, allowing a remote attacker to execute
arbitrary code through a crafted request.

These results follow the same trends as web server popularity, it
therefore stands to reason that Apache HTTP Server, being older and
more prevalent than both Microsoft IIS and Nginx, accounts for a
larger vulnerability and misconfiguration attack surface.

Description
Server Side Request Forgery (SSRF) is a vulnerability which allows an
attacker to create requests from a vulnerable server. SSRF attacks
typically target systems on internal networks that sit behind firewalls,
and are therefore not usually accessible from the outside world. SSRF
makes it possible for an attacker to access these systems, as well as
services running on the same server that is listening on the loopback
interface (127.0.0.1/localhost).

Impact
Since SSRF allows an attacker to forge requests on behalf of the
server, an attacker can scan and attack systems residing on the
internal network that are not normally accessible externally, such
as database services (MySQL, Elasticsearch, MongoDB...), caching
services (Memcached, Redis...), and directory services (Microsoft
Active Directory, OpenLDAP…). SSRF can be used to enumerate and
attack services that are running on these hosts, and possibly even
exploit host-based authentication services.

 2 As of May 2016 according to a Netcraft survey http://news.netcraft.com/archives/2016/05/26/may-2016-web-server-survey.html

1% of sampled targets vulnerable
to SSRF, indicates that SSRF is not as
widespread as other high-severity
vulnerabilities such as SQL injection,
or even code execution. However, it’s
potential impact once the vulnerability
is present is significant, especially in
helping an attacker conduct detailed
reconnaissance.

Server-side
Request Forgery

1%
55 Targets

18

Server-side Request Forgery Severity High

Acunetix Web Application Vulnerability Report 2016

Description
Overflow (such as buffer overflow, stack overflow and heap overflow)
vulnerabilities exist when a program does not exercise proper
bounds-checking, and as a result, overflows the buffer's boundary
and overwrites adjacent memory locations while writing data to a
buffer.

Impact
Overflow vulnerabilities can corrupt data, crash programs, or worse,
cause the execution of malicious code. To such an extent, buffer
overflows in software used to run web applications or network
infrastructure (such as web servers, routers and mail servers) pose a
serious security threat.

7% of sampled targets were found to be vulnerable to overflow vulnerabilities

(buffer overflows, integer overflows, heap overflows, stack overflows…). The majority of

this result can be attributed to the Easy File Management Web Server buffer overflow

vulnerability, followed by the Nginx SPDY heap buffer overflow (CVE-2014-0133). Given

the fact that most overflow vulnerabilities have stable exploits which can be easily used

by attackers to gain code execution, this figure can certainly improve, especially because

most of these vulnerabilities are just a missing patch or update.

Overflow
vulnerabilities

7%
396 Targets

Description
Network perimeter vulnerabilities residing in network perimeter
resources are typically results of configuration issues or
vulnerabilities in devices such as routers, firewalls and other network
appliances, or even services like web servers, mail servers and VPN
gateways to name a few.

Because most organizations are now starting to move all, or parts of
their infrastructure to the cloud the perimeter is no longer a clear-cut
physical perimeter that surrounds an organization’s premises. On the
contrary, the perimeter is changing to encompass everything from
the corporate firewall to mail servers hosted in the cloud.

19

Overflow vulnerabilities Severity High

Perimeter Network vulnerabilities Severity High

Acunetix Web Application Vulnerability Report 2016

SSH related
vulnerabilities

13%
750 Targets

DNS related
vulnerabilities

3%
154 Targets

Mail related
vulnerabilities

3%
157 Targets

13% of sampled targets were found to be vulnerable to Secure
Shell (SSH) related vulnerabilities, predominantly concerning OpenSSH
vulnerabilities. The most common vulnerabilities allow potential privilege
escalation (CVE-2015-6564); allow local users to conduct impersonation
attacks (CVE-2015-6563); make it easier for remote attackers to conduct brute-
force attacks or cause a denial of service through CPU consumption (CVE-
2015-5600); and vulnerabilities which make it easier for remote attackers to
bypass intended access restrictions (CVE-2015-5352).

3% of sampled targets were found to be vulnerable to Mail related
vulnerabilities. Unlike SSH and DNS related vulnerabilities, mail related
vulnerabilities do not largely pertain to a specific software package, instead
vulnerabilities are very much distributed amongst a variety of software
packages and common misconfigurations to mail servers. Amongst the most
common vulnerabilities, were tests against mail servers answering to VRFY
and EXPN requests, which can confirm the existence of names of valid users,
resulting in user enumeration; exported email CSV files and exposed sensitive
mailbox files, which could lead to username and information disclosure; and
open mail relay vulnerabilities.

3% of sampled targets were found to be vulnerable to Domain Name
System (DNS) related vulnerabilities, with the majority of vulnerabilities
centering around ISC BIND, the de facto, and most widely used DNS software
on the Internet. The most common vulnerabilities all related to remote DoS
vulnerabilities in ISC BIND (CVE-2015-5722, CVE-2015-8704, CVE-2015-5477,
CVE-2015-8000).

Impact
A misconfigured network device or service, or the presence of
vulnerabilities in services on a network infrastructure, can cause
havoc. An attacker often needs one small inlet into a network, and
from then on escalating an attack is usually easy; either because the
network is not properly segmented and/or not enough controls are in
place to detect intruders within a network.

Analysis

20

Acunetix Web Application Vulnerability Report 2016

Description
Denial of Service (DoS) vulnerabilities affect the availability of a
web application or another service, for instance DNS, SSH or SMTP
daemons. DoS vulnerabilities therefore inhibit legitimate users from
using the application normally since all resources end up being used
by an application or a service to respond to an attacker’s requests.

Impact
Because DoS attacks attempt to make a server, service or network
resource unavailable to its intended users, it likely results in loss of
business as well as increased resource usage, possibly resulting in
extra infrastructural and data transfer costs.

DoS

43%
2478 Targets

Slow HTTP DoS

27%
1516 Targets

43% of sampled targets were vulnerable to DoS attacks, with 27%
of targets being vulnerable to a web-server specific DoS attack known as
the Slow HTTP DoS attack. This vulnerability, also commonly referred to as
Slowloris, is an attack which allows an attacker with a single machine to take
down a web server with minimal bandwidth. The attack achieves this by
making requests to a web server and never closing the connection, causing
the server to run out of the maximum HTTP open connections allowed.
As a result, once the attacker occupies all connections of the web server,
requests made by legitimate users may not be fulfilled by the server until
the attacker stops the attack.

Other common DoS vulnerabilities include the Apache HTTP Server remote
denial of service vulnerability (CVE-2011-3192) and PHP DoS vulnerabilities
(CVE-2015-7804, CVE-2015-7803)

▲ 5% Given the potential business impact of a DoS attack,
defending against such attacks is important. Unfortunately, defending
against DoS attacks is not easy and the truth is that no one is really immune
to DoS attacks. However, mitigating against vulnerabilities like the Slow
HTTP DoS attack, make it harder for attackers to achieve DoS through the
use of simple vulnerabilities.

21

DoS related vulnerabilities Severity Medium

Acunetix Web Application Vulnerability Report 2016

Description
Cross-Site Request Forgery (CSRF) is a vulnerability wherein an
attacker tricks a victim into making a request the victim did not intend
to make. Therefore, with CSRF an attacker abuses the trust a website
has with a victim’s browser. An attacker could use CSRF to trick a
victim into accessing a website hosted by the attacker, or clicking a
URL containing malicious or unauthorized requests.

Impact
CSRF attacks leverage the identity and privileges of the victim when
the forged request is being sent to the web server in order to perform
actions desired by the attacker, such as change form submission
details, and launch purchases or payments for the attacker or a third-
party account.

Upon sending an HTTP request (legitimate or otherwise), the victim’s
browser will include the Cookie header. Cookies are typically used
to store a user’s session identifier in order to prevent the user
from authenticating for each request, which would obviously be
impractical. To such an extent, if the victim’s authentication session
is still valid (a browser window/tab does not necessarily need to be
open), an attacker can leverage CSRF to launch any desired requests
against the website, without the website being able to distinguish
whether the requests are legitimate or not.

59% of sampled targets were reported to be susceptible to CSRF, or an HTML
form without CSRF token. However, it is important to note that while it is possible to
detect CSRF automatically, it is not possible to automatically determine if the alert is
a real CSRF vulnerability or not. The reason for this is because not every HTML form
necessarily has a sensitive action associated to it—an example of this would be an
HTML form that submits a search query. Remember that the attacker has no way
of retrieving any part of the response of what the victim requested, so even if the
search box is in a restricted area, there isn’t much an attacker can do by making a user
submit a search query unintentionally.

Acunetix Vulnerability Scanner performs two different tests to attempt to detect CSRF
vulnerabilities—a test for CSRF in POST requests, and another for HTML forms that do
not have a CSRF token. Both alert types would need to be verified manually because
of the aforementioned reason.

CSRF

59%
3368 Targets

22

Cross-site Request Forgery Severity Medium

Acunetix Web Application Vulnerability Report 2016

Description
A host header injection attack can occur as a result of a web
application implicitly trusting the value inside the HTTP Host header
and using it to generate everything from links, to import scripts and
stylesheets on a page, and even generate password reset links.

Impact
Implicitly trusting the Host header is a bad idea, since it can be
controlled by an attacker. This can lead to web-cache poisoning
attacks to serve malicious content, as well as abusing alternative
channels such as password reset emails getting sent to the attacker
instead of an account’s rightful user. The latter attack is known as
password reset poisoning, and could allow an attacker to escalate
an attack to account takeover, and possibly even escalate the attack
even further if the account that is taken over is that of a high-
privileged user.

9% of sampled targets were found
to be vulnerable to host header injection,

which is a▼5% reduction from last year’s
14% figure. While a host header injection
vulnerability bears a significant risk, it
may not be as straight-forward to exploit,
or it might require the attacker to ‘get
lucky’ in order to take advantage of the
vulnerability. Having said this, once again,
this is a case of web developers placing
implicit trust in user-controlled input,
which could be easily avoided.

Description
Directory Listing refers to a web server misconfiguration that could
divulge sensitive information to an attacker. Directory Listing is
a ‘feature’ that is enabled in some web servers by default which
allows a user to view a list of files and directories hosted on the web
server in an organized hierarchical view. An attacker can abuse this
vulnerability by simply listing directories to find sensitive files.

Impact
Directory Listing can allow an attacker to escalate an attack by
disclosing sensitive information or even configuration. For instance,
an attacker can leverage a directory listing vulnerability to download
source code and find other exploitable vulnerabilities in an
application.

Host Header
Injection

9%
522 Targets

23

Host Header Injection Severity Medium

Directory Listing Severity Medium

15% of targets sampled were
found to be vulnerable to directory
listing misconfigurations. While
the fact that Apache HTTP Server
enabling directory listing by default
is certainly a contributor towards
this misconfiguration, disabling
directory listing is one of the very

first, and elementary configurational changes one should make when
first setting up a web server.

▼ 2% This figure dropped from last year’s 17%, which is
encouraging, however, clearly, more needs to be done to curb simple
misconfigurations like directory listing—one of the most effective
mitigations against this issue is secure default configurations.
The Nginx web server for instance, does not automatically enable
directory listing, instead the administrator would need to explicitly
configure it to serve directory listing pages. This being said, system
administrators should follow basic hardening guides when deploying
services they may not be fully familiar with.

Acunetix Web Application Vulnerability Report 2016

Description
Transport Layer Security (TLS) and its predecessor, Secure Socket
Layer (SSL) are widely used protocols designed to secure the transfer
of data between the client and the server through authentication,
encryption and integrity.

Impact
TLS security is essential for websites and other services that rely the
essential cryptographic protocols to allow browsing the web, using
email, shopping online, and sending instant messages without third-
parties being able to read or alter these communications.

Directory Listing

15%
522 Targets

24

TLS/SSL related vulnerabilities Severity Medium

Acunetix Web Application Vulnerability Report 2016

23% of targets were found to have TLS/SSL issues. TLS/
SSL issues were a hot news topic throughout 2014 and 2015, and
while some vulnerabilities have been discovered and patched in
libraries such as OpenSSL throughout 2016, these vulnerabilities
were nowhere as serious, widespread, or hyped as the venerable
TLS heartbeat read overrun vulnerability known as Heartbleed (CVE-
2014-0160), of which, this year only 0.3% of targets were found to be
vulnerable to.

Other TLS related vulnerabilities such as POODLE and BREACH
though, have not seen the same decline as Heartbleed did. 7% of
targets were found to be vulnerable to POODLE, and 3% of targets
were found to be vulnerable to BREACH.

▼ 6% Furthermore, the DROWN vulnerability, which was
publicly disclosed during March 2016, which is when the dataset was
compiled, only affected 0.2%, down by 6% over last year at the time
the dataset was compiled.

Heartbleed

BREACH

TLS/SSL related vulnerabilities

DROWN (public disclosure March 2016)

POODLE

23% [1287 Targets]

7% [394 Targets]

3% [165 Targets]

0.3% [19 Targets]

0.2% [9 Targets]

25

Analysis

Conclusion

Acunetix Web Application Vulnerability Report 2016

The analysis of the results obtained this year through Acunetix Online
Vulnerability Scanner (OVS) clearly indicate that the web application
attack vector is a major threat that organizations of all shapes and
sizes around the world are facing - whether they are aware of it or not
and they are compounding the problem by ramping up pressure on
dev teams to deliver web projects ever faster.

This year, the majority of all websites worldwide have at least one high
severity vulnerability, an increase of 9% since last year. While some
specific vulnerabilities are in decline, the trend is worryingly upwards.

With vulnerabilities such as SQL injection, Cross-site Scripting and
Code execution, the traditional 'patching' approach to mitigating
the majority of ‘traditional’ network-layer vulnerabilities, is often
not sufficient to defend an application against an attack. This is
largely because web application vulnerabilities generally arise from
poor design choices or oversights made during the development or
deployment process. To make matters more complicated, no two
web applications are the same—web applications include a lot of
custom code, plugins, configuration and other customizations that
are only used within that one application, but exposed to the world.
It is therefore crucial to ensure that software is written and deployed
securely in order for organizations to limit their exposure to risk.

Naturally, traditional abuse of network-layer vulnerabilities, malware
and exploits are still pervasive methods of not only compromising
machines, but also escalating attacks beyond the web application
into other, potentially more sensitive areas of an organization's
infrastructure—be that on premise or in the cloud. The heavy reliance
on web technologies is an ideal target for attackers to exploit,
and unfortunately, development teams are often up against tight
deadlines, caught-up in complex engineering problems, and most are
poorly equipped to assess the implications of insecure code within
their applications.

With web application
vulnerabilities increasingly
posing serious threats to
organizations’ overall security
posture, now is the time
for organizations to make
application-level security
not only a priority, but a
fundamental requirement.

26

Acunetix Web Application Vulnerability Report 2016

With the industry-wide skills shortage and limited scalability that the
conventional recruitment process offers, it’s time for organizations
to turn to alternative measures in order to establish a solid web
application security baseline.

One such alternative is to automate the security testing process
as much as possible. Naturally, automated testing, like any other
security testing methodology, should not be viewed as a ‘silver-
bullet’ solution, but rather, it should be seen as a highly cost-effective
approach to establishing a baseline security posture. By leveraging
automated security testing to uncover ‘low-hanging-fruit’, manual
security testing, be that through a traditional penetration test, or
through crowdsourced security testing platforms, is immediately
more cost effective because penetration testers’ focus is on finding
hard-to-reach bugs that require human logic, hunches and intuition to
discover.

Automated security testing provides a highly-scalable, cost-effective,
ongoing security baseline all the way from the initial stages of the
Software Development Lifecycle (SDLC) to Staging and Production
environments.

With web application vulnerabilities increasingly posing serious
threats to organizations’ overall security posture, now is the time for
organizations to make application-level security not only a priority, but
a fundamental requirement.

27

About Acunetix Online Vulnerability Scanner

About Acunetix

User-friendly and competitively priced, Acunetix Vulnerability Scanner
fully interprets and scans websites, including HTML5 and JavaScript
and detects a large number of vulnerabilities, including SQL Injection
and Cross Site Scripting, eliminating false positives.

Acunetix not only excels in accuracy, speed and support of modern
web technologies; but with over 3100 web application vulnerability
tests, it provides the widest testing coverage, including the detection
of out-of-band vulnerabilities such as Blind Cross-Site Scripting (BXSS),
Server-Side Request Forgery (SSRF), XML External Entity Injection
(XXE), Host Header Injection and more.

Acunetix also has the most advanced detection of WordPress
vulnerabilities and a wide range of reports including HIPAA and PCI
compliance.

Register for a free trial at:
http://www.acunetix.com/vulnerability-scanner/register-online-vulnerability-scanner/.

Founded in 2005 to combat the alarming rise in web application
attacks, Acunetix is the market leader, and a pioneer in automated
web application security technology.

Acunetix products and technologies are depended on globally
by individual pen-testers and consultants all the way to large
organizations such as the Pentagon, Nike, Disney, Adobe and many
more. For more information, visit www.acunetix.com/company.

WHERE TO FIND US

Stay up to date with the latest
web security news.

Website. www.acunetix.com

Acunetix Web Security Blog.

www.acunetix.com/blog

Facebook. www.facebook.com/acunetix

Twitter. twitter.com/acunetix

CONTACT INFORMATION

Acunetix (Europe and ROW)

Tel. +44 (0) 330 202 0190

Fax. +44 (0) 30 202 0191

Email. sales@acunetix.com

Acunetix (USA)

Tel. (+1) 404 990 3280

Fax. (+1) 404 990 3279

Email. salesusa@acunetix.com

